Validation report:

Anisus vorticulus qPCR detection kit

with eTaq qPCR master mix

#SYL128

Document date: 26 January 2022

For general laboratory and research use only

Index

1.	Vali	idation report Anisus vorticulus detection kit	4
	1.1	In silico validation	4
	1.2	Experimental validation	5
	1.2.	1 Gradient PCR	5
	1.2.	2 detection limit, fluorescence output signal and efficiency	5
	1.2.	.3 Influence of inhibiting factors present in environmental samples and repeatability	7
	1.2.	.4 Detection conformation of <i>Anisus vorticulus</i> in environmental samples	8
	1.2.	.5 Sequence conformation of specificity	8
	1.3	Summary of validation	9
	1.3.	1 Robustness	9
	1.3.	2 Detection limit	9
	1.3.	4 Efficiency	9
	1.3.	5 Repeatability	9
	1.3.	.6 Correctness	9

1. Validation report *Anisus vorticulus* detection kit

1.1 In silico validation

Table 1: Forward primer in silico validation

Length	21
GC %	33
Stability	3.3
T _M (°C)	56
Target region	COI (mtDNA)
Dimer	No
Run	No
Database hit	Anisus vorticulus

Table 2: Reverse primer in silico validation

Length (bp)	20
GC %	45
Stability	1.4
T _M (°C)	59
Target region	COI (mtDNA)
Dimer	No
Run	No
Database hit	Anisus vorticulus

Table 3: Probe in silico validation

Length	31
GC %	35
T _M (°C)	67
Target region	COI (mtDNA)
Dimer	No
Run	No
Fluorescence label	FAM

Table 4: Combined primers and probe in silico validation

PCR product size (bp)	98	
Combined dimer formation	No	
Combined 1000 BLAST® analyses of both	No direct hits in NCBI database.	
primers	Closest hit of 93.7% with Nanos	
	binotatus. Sequence of Anisus	
	vorticulus not present in NCBI	
	database.	
Date of BLAST® analyses	June 2021	

1.2 Experimental validation

All validation experiments were performed with the Sylphium qPCR mix and performed on Applied biosystems 7300 qPCR machines and Biometra gradient PCR machines.

1.2.1 Gradient PCR

Influence of the annealing temperature on the performance and specificity of the primer set was tested with a temperature gradient between 50°C to 72°C in ten steps. Optimal temperature and the temperature range in which the test can perform was determined.

Results:

The expected product was formed between 50.0°C and 67.6°C. Nonspecific additional fragments were not formed at tested temperature. No primer dimers were formed at any tested temperature. The optimal annealing temperature was between 50.0°C and 65.0°C (See Table 5).

Table. 5: Temperature gradient PCR on genomic DNA of Anisus vorticulus.

Annealing temp.	50.0°C	52.1°C	54.4°C	57.0°C	59.7.°C	65.0°C	67.6°C	69.0°C	72.0
Expected fragment	Strong	Strong	Strong	Strong	Weak	No	No	No	No
Primer dimer	No	No	No	No	No	No	No	No	No
Additional fragments	No	No	No	No	No	No	No	No	No

1.2.2 detection limit, fluorescence output signal and efficiency

Standard solutions with 10^6 , 10^5 , 10^4 , 10^3 , 10^2 , 10 and 0 target copies per 2 μ l were analyzed to determine the detection limit at optimal primer/probe concentrations. Fluorescent output signals were compared with the background to have at least a 100 fold increase in fluorescence signal. Reaction condition were adjusted if the fluorescence signal was too low in contrast to the background noise. Based on the slope of the standard curve the efficiency of the primer/probe set was determined. The efficiency should be between 90% and 110%. Limits of quantification and detection were determined on basis of this efficiency limitations.

Results:

The detection limits (low and high) for qualitative detection was determined between 1-10 and >10⁶ target copies per reaction. The detection limits (low and high) for quantitative detection was determined between 1-10 and >10⁶ target copies per reaction. The fluorescence output signal was at least 100 (8 for positive sample, 0,01 for a negative sample) times stronger than the background signal. (fig. 1). The efficiency of the test was above 90%. Which means that the efficiency of the primer/probe mixture can be regarded optimal (Fig. 2, table 7).

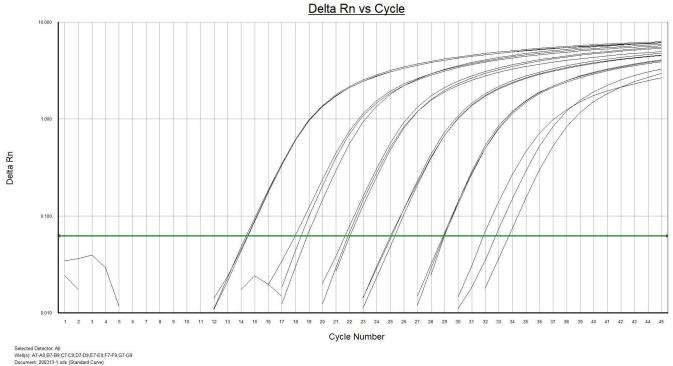


Figure. 1: Obtained fluorescent signal at optimal primer/probe concentration at a annealing temperature of 57°C.

Table 6: CT values obtained at optimal primer/probe concentration.

target DNA copy	Target detected	CT value	Standard deviation
0	Yes	n.a.	n.a.
1-10	Yes	32.8	0.9
10 ²	Yes	29.0	0.1
10 ³	Yes	25.1	0.1
10 ⁴	Yes	21.8	0.2
10 ⁵	Yes	18.4	0.4
10 ⁶	Yes	14.4	0.1

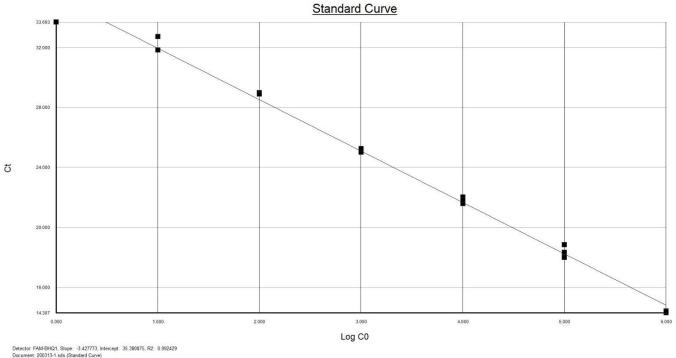


Fig. 2: Standard curve of SYL128 based on 10, 10², 10³, 10⁴, 10⁵ and 10⁶ DNA target copies

Table 7: Values obtained from the standard curve

Slope	-3.43	
Efficiency	95.7%	
R ²	0.992	

1.2.3 Influence of inhibiting factors present in environmental samples and repeatability

Performance of the assay was tested on the influence of inhibiting factors present in three different kinds of environmental water samples (sandy, clayey or peaty bottoms) in three fold spiked with 1000 target DNA copies. The Δ CT between spiked samples and spike only was determined and should be less than 2. Standard deviations and the standard error of mean were calculated to determine robustness, repeatability and measurement uncertainty.

Results:

No fluorescent output signal was detected in the environmental samples without added target organism DNA (spike). Spiked samples and the spike only analyses gave in all replicates a positive signal. (see table 8). In all cases the Δ CT was less than 2. The standard error of the mean was 0,09 within these samples with an average of 27.8.

Table 8: CT values obtained with target organisms free environmental samples spiked with 1000 target copies.

Sample	CT value	Standard deviation	ΔCT
Sandy	-	-	-
Clayey	-	-	-
Peaty	-	-	-
Sandy + spike	27,9	0.0	0.6
Clayey + spike	27.8	0.2	0.4
Peaty + spike	28.0	0.1	0.7
Spike only	27.3	0.1	-

1.2.4 Detection conformation of *Anisus vorticulus* in environmental samples

The amount of eDNA that a target organism leaves in the environment depends on the type of target organism, environmental factors and season (CEN / TC230-water analysis, proposal documented in N 1229). To determine the minimal filtration volume, samples were taken at locations where *Anisus vorticulus* may occur, during the optimal seasons (spring, summer and autumn). Samples were taken with SYL009 - Environmental Sampling Kit and eDNA was isolated with SYL002 - Environmental DNA Isolation Kit.

Results:

The kit SYL128 - *Anisus vorticulus* detection kit was able to detect *Anisus vorticulus* in environmental samples from different location in the Netherlands. On average, a positive sample gave 1 to 10 molecules *Anisus vorticulus* DNA when 100 - 200 ml water was filtrated.

1.2.5 Sequence conformation of specificity.

PCR products obtained from the environmental samples where the presence of *Anisus vorticulus* was suspected were sequenced for conformation of identity of the formed product. If any product was formed with target organism free environmental samples, than these products were also be sequenced.

Results:

Target organism free environmental samples did not give any PCR product. PCR products obtained from the gradient PCR experiment were sequenced via the Sanger sequencing method. No BLAST hits were found above <97%, which indicates that there are no sequences present in Genbank of the species *Anisus vorticulus*. The obtained sequences were 100% identical with the sequences Sylphium was able to extract from collected *Anisus vorticulus* snails.

1.3 Summary of validation

1.3.1 Robustness

"Influence of temperature variations and inhibiting factors present in environmental samples on the performance and specificity of the primer set"

- Primers specific at temperature range: 50°C 57°C (section 1.2.1, table 5)
- Influence of chemical and biological factors present in environmental samples on the performance of the test were not found. (section 1.2.3, table 8)
- Fluorescent output signals of positive samples is at least 100 fold stronger than the background

1.3.2 Detection limit

"Limits (lower and upper limit) within which the analysis can be reliably applied"

- Limit of detection (LOD) for this kit was determined on 1 copy per reaction. Limit of quantification (LOQ) was also determined on 10 copies per reaction. (section 1.2.2, table 6)
- To determine the presence or absence of the species, the minimal filtration volume is 200 ml. (section 1.2.4)

1.3.4 Efficiency

"The comparison of what is actually produced with what can be achieved with the same consumption of resources"

The efficiency of the primer set is 95.7 %, this means that the primer/probe mixture can be regarded as optimal. (section 1.2.2, table 7)

1.3.5 Repeatability

"The degree of similarity between the results of measurements of the same measured quantity that were performed under different measurement conditions"

There was no difference (Δ CT <2) between different kinds of environmental water samples (sandy, clayey or peaty bottoms) spiked with 1000 target DNA copies. (section 1.2.3, table 8)

1.3.6 Correctness

"The ability of the method to do what it 'says' to do"

- The test was able to detect *Anisus vorticulus* DNA in environmental samples from locations were the presence of *Anisus vorticulus* was suspected. (section 1.2.5)
- The method did not give any other combined BLAST hit than the target organism Anisus vorticulus
- The method was able to detect all spiked target DNA in target organism free environmental samples (section 1.2.3, table 8)
- The method did not give any signal in target organism free environmental samples (section 1.2.3, table 8)
- The standard error of the mean based on the measured CT values from the spiked experiments (1000 target copies) was 0.09 on an average of 27.8.